Best Practices for Intermediate
Level Python Development

W Operati .uS:S‘EMIRFalse
=y RO -

ror_mod.use x Fa'fzz ' Daniel Perrefort
Mirror_mod.use .y

False
Tor _mod. i
= v 2 = True Center for Research Computing

"election at s) .]
B e 1 University of Pittsburgh
jer_ob.select=1
ntext.scene.objects.actiw
M "Selected” + str(modifier 0
Beirror _ob.select = 0
bpy.context.selected_ob
ata.objects[one.name].se

wrint("“please select exacthy =

. OPERATOR CLASSES ---

P1

4 3
y

=

0

-
—

4
4
s
y
' 4
=

Where Does this Fit in My Workflow?

Development Operations

A A
4 AY4 A\

T 1

Every stage of the software development life cycle has its own best practices

Today we will focus on the process of designing and writing code.

Today's Outline

1. Whatis a "Best Practice"?
2. Writing Clean Code With PEPs
Break

3. Common Software Design Principles

Break

4. Tools for Easier Software Development

What Is a Best Practice?

What is a "Best Practice"

KEEP IN MIND THAT TM .. \MWJOU. IT'S LIKE. A SALAD RECIPE. | [1TS LIKE. SOMEONE TOOK A
SELF-TAUGHT, SOMY CODE | 145 15 LKE BeENG IN | WRITTEN BY A CORPORATE. | | TRANSCRIPT OF A COUPLE
MAY BEA LITLE MESSY. | A HoUSE BUTBYA | LWYER USING A PHONE | | ARGUING AT IKEA AND MADE
LEMME SEE- CHILD USING NOTHING AUTOCORRELT THAT ONLY RANDOM EDITS UNTIL IT
M SRE BUT A HATCHET AND A | KNEW EXCEL FORMULAS, | | COMPILED WITHOUT ERRORS.
s F"iﬁ PICTURE. OF A HOUSE. < \ OKAY, TLL REFD

(A STYLE?UIDE.

Any procedure, design pattern, or style that is accepted as being the most effective either by
consensus or by prescription.

"Good code can be read by a professional. Great code can be read by a Student. The best code is no
code at all.”

—Anonymous

Tips For Following a Best Practice

Thinkabout how you will After coding, reflect on why Work collaboratively
build something before you that was a good (or not so whenever possible
codeit good) approach

Writing high quality code is an ongoing process!

Tips For Not Following a Best Practice

© 0 0O

When the guideline makes When you break consistency With the code is no longer When the guideline breaks
things more difficult to with surrounding code (like being maintained and you are compatibility with other
understand. legacy code). making a small patch. software.

"Best Practices" should not be followed blindly. Know when they should be ignored.

Today's Focus

* Styling Python code for readability
* Documenting your software

* Basic software design principles

* Intermediate / "Advanced" object-oriented design principles

Writing Clean Code
With PEPs

Python Enhancement Protocols

“A PEP is a design document providing information to the Python community, or describing a new
feature for Python or its processes or environment.” (PEP 1)

Important PEP 8: Style Guide for Python Code
Fundamentals

PEP 20: The Zen of Python

PEP 257: Docstring Conventions

Bonus PEPs PEP 484: Type Hints
PEP 498: Literal String Interpolation

PEP 572: Assignment Expressions

PEP 20

The Zen of Python

https://peps.python.org/pep-0020/

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.
Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one - and preferably only one - obvious way to do it.

Although that way may not be obvious at first unless you're Dutch.
Now is better than never.

Although never is often better than *right™ now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea - let's do more of those!

>>> import this

11

Topics covered by PEPS:
e Code Lay-out
* Indentation
* Maximum Line Lengths
* Using Blank Lines and Line Breaks

PEP 8 * File Encoding

_ * Imports
Style Guide for Python Code

e Comma and Whitespace Usage

https://peps.python.org/pep-0008/

* Documentationand Comment Styling
* Naming Conventions
* Publicand Internal Interface Design

* General Programming Recommendations

The big idea:

"Code is read much more often than it is written"

Why PEP 8 Matters

def f(n):
if n < 0: print("/nvalid"); return
elif n==0: returnO
elif (
n==1
or n==2
): return 1
return f(n-1)+f(n-2)

Question 1: What does this code do?

Why PEP 8 Matters

def fibonacci(n):
"""Returns the nth Fibonacci number

mnin

Question 1: What does this code do?

ifn<O:
pr;nt(Invalid”) Question 2: How long did it take you to answer Question 17?
return

elif n == 0: Things that jump out:
return0 1. Function name + docstring provide context

2. There are 4 return cases

elifn==1o0rn==2: 3. The functionis recursive

returnl
return fibonacci(n-1) + fibonacci(n-2)

The Basics...

Your probablyalready familiar with:
* Using 4 spaces per indentation level (nottabs!)

* Putting two blanklines before functions and classes

* Limitinglinelengths to:

e 79 characters for code

* Itis okaytoincrease the linelength limit (Be consistent)

PEP 8 — Using Booleans

 Booleansare already booleans—they don’t need comparisons

* Forsequences, (e.g., a lists), use the fact empty sequences are false

my_boolean=True my_boolean = True
Incorrect # Correct for sequences and booleans
if my_boolean == True: if my_boolean:
do_something() do_something()
Incorrect # An empty list is False
if my_booleanis True: if my_list:
do_something() do_something()
Still Incorrect

if len(my_list) 1= 0:
do_something()

PEP 8 — Using Is

* Use 'is° when comparing singletons
e Use ‘isnot instead of ‘not ... is

« Remember ‘None' is a singleton

Incorrect # Correct
if foo == None: if foo is None:
do_something() do_something()
Correct
Also Incorrect if foo is not None:
if not foo is None: do_something()

do_something()

PEP 8 — Using with

e Also known as a "context manager"

* Use with to handle opening/closingfiles, database transactions, etc.

Incorrect # Better

foriinrange(10): forindin range(10):
input_file= open(f'file_{i}.txt") with open(f'file_{ind}.txt")as input_file:
input_file.readline() input_file.readline()

input_file.close()
Even Better
directory = Path(".")
for file in directory.glob("file_*.txt"):
with file.open() as input_file:

PEP 8 — Using try/except

 Know "Look before you leap" (LBYL) vs. "Easier to Ask Forgiveness than Permission" (EAFP)
* Use explicit exception catching (avoid bare exceptions)

* Keep 'try statementsas simple as possible

Incorrect # Correct
try: try:
import platform_specific_module import platform_specific_module
my_function()
except ImportError:
except: platform_specific._ module= None
platform_specific_ module= None

else:
my_function()

PEP 8 — Using lambda

* Avoidusing anonymous functions
« Common exceptions:

e Short, single use functions

* Wrappingtypes as callables

* Functionsdefined in a narrow scope

Incorrect # Correct
double =lambda x: 2 * x def double(x):
return2 * x

PEP 8 — Variable Naming Conventions

TYPE NAMING CONVENTION EXAMPLES

Function Use lowercase words separated by underscores. function, my_function

Variable Use lowercase letters or word, or words separated with underscores. (l.e., X, var, my_variable
snake_case)

Class Start each word with a capital letter. Do not separate words with Model, MyClass
underscores. (l.e., CamalCase)

Method Use lowercase words separated with underscores. class_method, method
Constant Use an uppercasesingle letter, word, or words separated by underscores. CONSTANT, MY_CONSTANT
Module Use shortlowercase words separated with underscores. module.py, my_module.py

Package Use shortlowercase words without underscores. package, mypackage

PEP 8 — Variable Naming Example

GLOBAL VAR =1

def my_method():
print(GLOBAL_VAR)
class MyClass:
def __init_ (self, my_var=2):
self.my_var

self._private_var

def my_method(self):

PEP 8 — Whitespace

GLOBAL VAR=1 «<—— Space aroundequals

def my_method():
print(GLOBAL_VAR)

Functionsand methodsare —
styled mostly the same way.

class MyClass:

Notice the single space before—> def _init_ (self, my_var=2): <— No space around equals

methods — not double space. self.my_var
self._private_var

def my_method(self):

PEP 257

Docstring Conventions

https://peps.python.org/pep-0257/

The aim of this PEP is to standardize the high-level structure of docstrings:
what they should contain, and how to say it (without touching on any markup

syntax within docstrings). The PEP contains conventions, not laws or syntax.

“A universal convention supplies all of maintainability, clarity, consistency, and
a foundation for good programming habits too. What it doesn’t do is insist

that you follow it against your will. That’s Python!”

—Tim Peters on comp.lang.python, 2001-06-16

If you violate these conventions, the worst you'll get is some dirty looks. But

some software (sueh-asthe Docutils-deestringprocessing system-PEP- 256,

PEP-258) will be aware of the conventions, so following them will get you the

best results.

24

http://docutils.sourceforge.net/
https://peps.python.org/pep-0256
https://peps.python.org/pep-0258

What is a Docstring

def fibonacci(n):
"""Returns the nth Fibonacci Number

min

ifn<O:
print("/nvalid")

elif n ==0:
return 0

elifn==1o0rn==2:
returnl

else:
return fibonacci(n-1) + fibonacci(n-2)

* String literal as the first statement in a module, function,
class, or method

o Assignedtothe doc__ attribute

* Describe what a function/class does not how it works

o Exception: Uncommon technical details

triple double quotes""" for docstrings

o User""" if you use backslashesinyourdocstrings
o Use u""" for Unicode docstrings

* Always use

nnn

*Use a blank line after docstring

*Docstrings can be single-line or multi-line

Single-Line Function Docs

*Include a single line docstring at minimum
*Use for really obvious cases.

*They should really fit on "one line"

Wrong: Don't document how def average(a, b):
def average(a, b): """Return the average of a and b"""
"""Add a + b and then divide by 2"""

Wrong: Don't document signatures
def average(a, b):
"""function(a,b)-> list"""

Multi-Line Function Docs

Start with a one-line description and add as necessary:
o Alongerexplanation

o A ts/Ret ' [
rguments/Returns Note how the documentation describes

* Raised exceptions the behavior- not the implementation.

def connect_to_next_port(self, minimum):
"""Connects to the next available port.

Connections are left opened until closed manually

Args:
minimum (int): A port value greater or equal to 1024

Returns:
The new port value

Raises:
ConnectionError: If no available port is found.

Writing Class Docs

class Square:
"""A class used to represent a geometric Square

Attributes:
length (float): Side length of the square

Methods:
area (int): Return the area of the square

def _init_ (self, length):
"""Createa square with the given side length

Args:
length (float): Side length of the square

Class docstring summarize class behavior
 List the public methods/attributes
* Required subclass interfaces (if abstract)

init__(or __new__) documents

construction

* Don't document private
methods/attributes

Subclasses should summarize interfaces
differences

 Use “override” for overwritten methods
* Use “extend” to indicatea callto super

Writing Class Docs |n Reality

class Square:

* Avoidduplicatedocumentation
"""A class used to represent a geometric Square"""

* Documentclass, constructor, and all

def __init__ (self, length): public methods

"""Createa new square with a given side length

* Implement "full docs" in code developed

Args: for a user base

length (float): Side length of the square

def private_helper(self, length):
This doesn't have to be publicly documented,
but docs are still useful for other developers

Writing File Level Docs

*For standalone scripts, include
° Include usage and command line syntax

[e]

Include functionalityand environment variables.

(e]

Can be elaborate (several screens full)
Must be sufficient for a new user to use the command

(e]

[e]

Should be quick reference for the sophisticated user.

*For modules:
o Describe module purpose

o Include submodules/ subpackages
° Include classes, exceptions and functions
o Limit summaries to one-line each.

*Follow the same style as other docstring

Writing Useful Comments

e Code canbeits own documentation.
« Commentingout code blocksis confusing

e Avoidthe "royal we"

Open the file # Load directory contentsinto database
with file.open() as input_file: with file.open() as input_file:

We iterate over array elements
for elementin array:
print(element)
#element+=1
element = element.copy()

32

Common Software
Design Principles

Design Principles Overview

FUNDAMENTALS OBJECT-ORIENTED DESIGN (OOD)
o Big Design Up Front (BDUF) o S - Single-responsibility Principle
o Keep It Simple (KISS) > O - Open-closed Principle
o Principle of Least Surprise o L - Liskov Substitution Principle
> You Aren’t Going To Need It (YAGNI) o | - Interface Segregation Principle

(e]

Don't Repeat Yourself (DRY) o D - Dependency Inversion Principle

Big Designh Up Front

When designing code:
o Design the architecture first

o Divide requirementsinto stages based on priority
o Repeat BDUF principle at each stage

* Bigger projects = bigger designs

* Design however works for you
. o Draw it out on a whiteboard

NS -

o Lay outyour design in UML

o Draft some exploratorycode

Keep It Simple (KISS)

* Whatis "simple" code?
o Simple code is usually easy
o Simple code is straightforward

* Related Concepts:
o Coupling: How much do modules depend on each other?

o Cohesion: How well the modules belong together. Simple: Composed of few, well defined parts with low
couplingand high cohesion

 Simple code has only as many parts as necessary with low coupling and high cohesion

Keep It Simple (KISS)

» Keep your methods short
* Focus on crucial/critical methods before adding frills
* Methods should only address one problem at a time

* Break up the code into smaller blocks as you go

* Avoid excessive branching, deep nesting, or complex class structures

Principle of Least Surprise

* Code usage should be intuitive and obvious

* Some of this is naming practices:

def square(a): def square_area(side_length):

* Some of it is implementation:

def subtract(x, y): def subtract(x, y):
"""'Subtracttwo numbers""" """Subtracttwo numbers

returny - x return x - y

You Aren’t Going To Need It (YAGNI)

T sAD-—-
CAN YoU PASS T KNOW! TH DEVELOPING
ARBITRARY CONDIMENTS.

Eﬁ O |05l
it [Pt llzan —

You Aren’t Going To Need It (YAGNI)

HOW LONG (AN YOU WORK ON MAKING A ROUTINE. TASK MORE
EFFICIENT BEFORE YOURE SPENDING MORE TME THAN YOU SAVE?

(ACRDSS FIVE YEARS)
That new feature probably wont | HOW OFTEN YOU DO THE TRSK |
o Save anytime in the long run Doy pay DALY WEEKLY MONFLY YEPRLY
> Justify the added complexity 1 seconD ([T oay | 2ovRs | 000 | - . =
o Cover real world edge cases 5 SECONDS Em 12 HOURS | 2 HOURS Hmzl,rlrts ﬂ|5 25
Emmazas]
30 SECONDS | e |[3] DS |12 wooes | 2 voes | 20 | Ze
i i (mmnnn=s])
But it probably will 0w 4 Mwwe (G (T8 oavs [T oay | 4 wooks | Lvok | D
o Eatup yourtime

o Add overhead (testing / maintaining)

o Break and cause a headache

Don't Repeat Yourself (DRY)

* Duplicate code should be moved into a dedicated function/method

* Duplicate code is WET (write everything twice)

* Example scenario with WET code:
1. Youimplementanew feature
2. Thecodeforthatfeature gets copy and pasted repeatedly
3. Youfindabuginthefeature
4. Yougoonabughunttofindevery instance of reused code
5. Youhopeyoufound everyinstance of the problem

e Example scenario with DRY code:
1. Youimplementanew feature
2. Youfindabuginthefeature
3. Youfixthebug

Fundamental Principles (Review)

FUNDAMENTALS

o Big Design Up Front (BDUF)

o Keep It Simple (KISS)

o Principle of Least Surprise

> You Aren’t Going To Need It (YAGNI)
o Don't Repeat Yourself (DRY)

SOLID Design
Principles

(@)

(o)

o

@)

(@)

S - Single-responsibility Principle
O - Open-closed Principle

L - Liskov Substitution Principle

| - Interface Segregation Principle

D - Dependency Inversion Principle

43

Single Responsibility Principle (SRP)

*Every module, class, or function should be responsible for a single functionality,
and it should encapsulate that part.

*In simpler terms:
o SRP applies at all levels of code (functions, classes, modules, packages)

o Each "unit of code" should be responsible for a single task
o Each unit should be properly encapsulated

*SRP does not argue for giant-monolithic structures. It’s the opposite!

"A class should have only one reason to change"
-Robert C. Martin

SRP Example

Extract Transform Load

def download_data(url): def average_yield(data): def upload(processed_data, DB):
"""Return average stock yield""" """Load datainto project DB"""

"""Download project data

SRP Example

Extract Transform Load

class Extract: class Transform: class Load:
def _init_ (self): def average_yield(data): def upload(data, DB):
self._data= None """Return value metrics""" """Loaddatainto DB"""
def authenticate(self, user_key): ... # Other calculations
"""Log in to remote server"""
def download_data(self, url): Question: Should the “authenticate” step be in its own class? Why?

"""Download project data

Open/Closed

* Objects should be open for extension but closed for modification
o A class should be extendable without modifying the class itself

* Open/Closed benefits from:
o Cleaninheritancestructures (assuming SRP)
o Polymorphismin dependency classes

o Low coupling between classes

Open/Closed Example

class Square: class AreaCalculator:
"""Stores geometric properties for a square"""
def total_area(self,shape_arr):
def __init__ (self, length): """Return the total area for a collection of shapes
self.length = length

total _area=0
for shape in shape_arr:
class Circle: if isinstance(shape, Square):
"""Stores geometric properties for a circle""" total _area+=shape.length ** 2

def _init__ (self, radius): elif isinstance(shape, Circle):
self.radius = radius total _area+=pi * shape.radius** 2

return total_area

Open/Closed Example

class Square: class AreaCalculator:
"""Stores geometric properties for a square"""
def total_area(self,shape_arr):
def __init__ (self, length): """Return the total area for a collection of shapes
self.length = length

return sum(shape.area() for shape in shape_arr)
def area(self):
return self.length ** 2

class Circle:
Notice how this solution also follows the SRP.

def _init_ (self, radius):
self.radius = radius

def area(self):
return pi * self.radius ** 2

Liskov Substitution

Parent classes should be replicable with their child classes

Note:

We don't actually expect random code substitutions. This is more of a "guiding principle" for designing
good inheritance structures.

In practicality:
o Avoid child classes that have little in common with the parent class

o Aim for high cohesion

Liskov Substitution Example

You have been tasked with writing two classes - one
representinga Square and one representinga
‘Rectangle’.

Define these classes in a way that:
1. One classinherits from another
2. Eachclass has a method for the "area” of the shape
3. The classes obey Liskov Substitution

Liskov Substitution Example

You have been tasked with writing two classes - one Option 1
representinga Square and one representinga
‘Rectangle’.
Square

Define these classes in a way that:

1. Oneclassinherits from another

2. Eachclass has a method for the "area” of the shape

3. The classes obey Liskov Substitution

Rectangle

Liskov Substitution Example

You have been tasked with writing two classes - one Option 1 Option 2

representinga Square and one representinga

‘Rectangle’.
Square Rectangle
Rectangle Square

Define these classes in a way that:
1. Oneclassinherits from another
2. Eachclass has a method for the "area” of the shape
3. The classes obey Liskov Substitution

Liskov Substitution Example

: . class Rectangle:
You have been tasked with writing two classes - one 8

representinga Square and one representinga

‘Rectangle". def __init_ (self, length, width):

self.length = length
selfwidth = width

Define these classes in a way that:
1. One classinherits from another
2. Eachclass has a method for the "area” of the shape
3. The classes obey Liskov Substitution

def area(self):
return self.length * self.width

Liskov Substitution Example

: . class Rectangle:
You have been tasked with writing two classes - one 8

representinga Square and one representinga

‘Rectangle". def __init_ (self, length, width):

self.length = length

If.width = width
Define these classes in a way that: SElLWE Wi

1. Oneclassinherits from another
2. Eachclass has a method for the "area” of the shape
3. The classes obey Liskov Substitution

def area(self):
return self.length * self.width
class Square(Rectangle):

def __init_ (self, length):
super().__init__(length, length)

Interface Segregation

*An interface is a set of abstractions:
o ‘Square.area()
o ‘Square.perimiter()’
o ‘Square.width()

*Clients should not be required to use interfaces they don’t need
o Most applicableto large projects

o Avoid giant, monolithicinterfaces
o Rely on smaller, client specific interfaces

Interface Segregation Example

Gy

Client Group 1 \

Interface Segregation Example

Gy

Client Group 1 \

Interface —_— ML Model

Client Group 2

Interface Segregation Example

65.\

Client Group 1

Interface ML Model

Cllent Group 2

Cllent Group 3

Interface Segregation Example

-
Client Group 1 \
IQ'

Interface 2 > ML Model

Client Group 2

o)

Client Group 3

> Interface 3
Interfaces can still be

subclasses of a shared
(SOLID) parent class

Dependency Inversion Principle

* High-level constructs should not rely on low level implementations
o Both should depend on abstractions(e.g., interfaces).

» Abstractions should not depend on details.
o Details (implementations) should depend on abstractions.

* In simple terms: Rely on abstractions

Dependency Inversion Example

class Square: class AreaCalculator:
"""Stores geometric properties for a square"""
def total_area(self,shape_arr):
def __init__ (self, length): """Return the total area for a collection of shapes
self.length = length

total _area=0
for shape in shape_arr:
class Circle: if isinstance(shape, Square):
"""Stores geometric properties for a circle""" total _area+=shape.length ** 2

def _init__ (self, radius): elif isinstance(shape, Circle):
self.radius = radius total _area+=pi * shape.radius** 2

return total_area

Dependency Inversion Example

class Square: class AreaCalculator:
def _init__ (self, length): def total_area(self,shape_arr):
self.length =length """Return the total area for a collection of shapes"""
def area(self): return sum(shape.area() for shape in shape_arr)

return self.length ** 2

class Circle:
def __init_ (self, radius): Notice how this solution also follows the SRP
self.radius = radius and Open/Closed.

def area(self):
return pi * self.radius ** 2

Solid Principles Review

OBJECT-ORIENTED DESIGN (OOD)

o S - Single-responsibility Principle
o O - Open-closed Principle

o L - Liskov Substitution Principle

o | - Interface Segregation Principle

o D - Dependency Inversion Principle

65

Tools for Easier Software
Development

Enforcing PEP 8

e Command line tools for PEP 8 are also available
o Pylint: http://pylint.pycqa.org/
o Flake8: https://flake8.pycqga.org/

* PEP8 inspection is built into many Integrated Development Environments (IDEs)

* Jupyter Plugins:
o Python Black: https://github.com/drillan/jupyter-black

http://pylint.pycqa.org/
https://flake8.pycqa.org/
https://github.com/drillan/jupyter-black

Using Pylint

S pylint example.py

def Fibonacci(n):
"""Returns the nth Fibonacci Number
if n<O:
print("/nvalid")

min

elifn==0:
return0

elif n==1 or x == 2:
returnl

else:
return Fibonacci(n-1) + Fibonacci(n-2)

Using Pylint

S pylint example.py
FRkRRRRLRKERE \odule example

def Fibonacci(n): example.py:1:0: C0114: Missing module docstring (missing-module-docstring)
"""Returns the nth Fibonacci Number"""
ifn<O: example.py:1:0: C0103: Function name "Fibonacci" doesn't conform
print("Invalid") to snake_case naming style (invalid-name)
elif n == 0: example.py:1:14: C0103: Argument name "n" doesn't conform to
return 0 snake_case naming style (invalid-name)

example.py:3:4: R1705: Unnecessary "elif" after "return" (no-else-return)
elif n==1or x == 2:

returnl example.py:10:17: E0O602: Undefined variable 'x' (undefined-variable)
else: example.py:1:0: R1710: Either all return statements in a function should return
return Fibonacci(n-1) + Fibonacci(n-2) an expression, or none of them should.

(inconsistent-return-statements)

Your code has been rated at -1.11/10

What is an IDE?

An Integrated Development Environment (IDE) is a software application
designed to maximize a programmer’s productivity by providing a
comprehensive set of tools and facilities.

- Wikipedia

Are Jupyter Notebooks an IDE?

Yes... kind of ...
o Autocomplete

[¢]

Syntax highlighting

(e]

Code execution

o

Cross language support (HTML, Markdown)
o Plugin support

But no, not really ...
° No cross file support

o No integrated test suite / profilingtools
° No major refactoring or code search tools
o Missing dozens of other useful features

Common IDE Features

*Refactoring *All of your tools in one place (Terminal, File

, , Explorer, Code Editor, GitHub U, ...)
*Real time syntax and argument checking

. , *Optimization Suggestions
*Automatic code formatting

: : *Built-in debugging tools
*Automatic docstring templates

N *Auto code generation (getters and setters)
*Code navigation

, _ *File navigation
*GitHub Integration

*Command line interface

*PEP 8, 257, and 484 integration

*Test suite integration
*Test coverage reports

*Profiling

Picking an IDE

EESSS———— 33% PyCharm *|DEs are generally language specific
T—— 29% VS Code o Some support for "secondary" languages
| 8% Vim
| 4% Sublime Text
| 4% Jupyter Notebook
o 3% Atom * >75% of developers write code in an IDE
B 2% Emacs o Jetbrains 2020 developer survey
B 2% Spyder
| 2% IDLE
| 2% JupyterLab
| 2% IntelliJ IDEA
| 1% NotePad++
3% Other
3% None

SN-PWV — example.py - I)
File Edit View Navigate Code Refactor Run Tools Git Window Help

SN-PWV = (= example.py 2~ Unittestsintests v p # T G ~ Git: ¥ « A QO o
E = example.py I
E 1 def Fibonacci(n): 01 L2 A~ ~ E

o
LI ""“Returns the nth Fibonacci number""" Eﬁf
=| 3 if n < 0: @

E . .

E| 4 print("Invalid") i
s} 1%
b= return %

(7]
=
2 elif n ==

g R
g return 0 o
[+4 7]
= 2
¢ - E
I elif n==1 or x == 2: _|®

11 return 1
13 return Fibonacci(n - 1) + Fibonacci(n - 2)
Fibonacci()
Problems: Current File - Project Errors 'Project Default' Profile on File '.../dao.py’ 'Project Default' Profile on File ".../example.py' a —

»» [z] “ Inspections Results 1error 2 weak warnings

v Python 1 error 2 weak warming: Select inspection to see problems.

=M ~ PEP 8 coding style violation 1 weak warning

E ~ e example.py 7 weak warning
% ‘¢ PEP 8: E225 missing whitespace around operator
§ 12 ~ PEP 8 naming convention violation 1 weak warning
m y? v (= example.py 1 weak warning

Function name should be lowercase

£ ~ Unresolved references 1 error
g v (= example.py 1error
,§ Unresolved reference 'x'
n

P Git :=TODO = @ Problems % Endpoints E® Terminal £ Python Packages @ Python Console () Event Log

I

Code inspection did not find anything to report. 0 files proce... (a minute ago) <no default server> 1:1 LF UTF-8 4 spaces Python 3.9 (SN-PWV) P djperrefort/fit_cosmology % @

Enforcing Coding Principles

* Develop Software Collaboratively
o Get feedback from senior developers

o Hold eachother to established guidelines

* Software inspection Tools
o Greatin a Cl setting, but take a lot of upfront configuration

o www.codacy.com

o www.codeclimate.com

http://www.codacy.com/
http://www.codeclimate.com/

GitHub.com

*A cloud-based VCS hosting system with integrated utilities for building and deploying software
*GitHub is built on git and provides web-based wrappers for git features

*Some great GitHub features
o Graphicalinterface for visualizing source code, commit history, branches, etc.
o Collaborative platform for reviewing and approving source code changes
o Robust permissions management settings
o Support for automated tasks
o Easier conflict resolution than git (usually)

<> Code Issues 3 Pull requests Actions Projects 1 Security
Current branch — v mse - P3oeos D00 Go to e
La St CO m m it ’ " djperrefort Merge pull request #28 from mwvgroup/support_running_in_main

—

Filesincluded
inthe —
repository

Contents of
the README |
File

rch or jump to... Pull requests Issues Marketplace

& mwvgroup / Egon

github/workflows Removes duplicate python version from test matrix

egon Docstring edits for clarity
tests Raises an error when calling start/join/kill on pool with size 0
.gitignore Allows multiple output connectors to attach to an input
MANIFEST.in Adds missing manifest file
README.md Update README.md
requirements.txt Switches to production guality web server
setup.py Updates author information
README.md

Egon

Egon is a lightweight framework for constructing parallelized analysis pipelines.

See the docs at https://mwvgroup.github.io/Egon/

+ ca31588 14 days ago

& Unwatch « 2 7 Star a qu Fork a

Settings <

Other

4 Code ~

¥ 209 commits

7 months ago
14 days ago
15 days ago

7 months ago

2 months ago
21 days ago

2 months ago

2 months ago

V4

repository data
About X
https://mwvgroup.github.io/Egon/

[0 Readme

Releases 10

> 050 ':::Latezt::]

14 days ago

+ Greleases

Packages

Mo packages published
Publish your first package

Contributors 2

9 djperrefort Daniel Perrefort
Q MCilento Meghan Cilento

Environments 1

&7 github-pages Active

Languages

A —
® Python 93.4% ® (S56.6%

Pull requests Issues Marketplace Explore

= numpyf numpy () Sponsor G Watch ~ 561 ¥y Star | 17.7k w9 Fork | 5.7k

Code Issues 2.1k 1% Pull requests 252 Actions Projects 8 Wiki Security Insights

PR title —> DOC: Add clarification for np.array being 0 dimensional #19523 Open with ~

PR Status N buNel Nl yashasvimisra2... wants to merge 1 commit info numpy:main from yashasvimisraz7es:yashasvi_patch_1 (2]

L) Conversation 3 Commits 1 Checks 25 Files changed 1 +4 -1 EEEEN

a yashasvimisra2798 commented 2 days ago Contributor =~ (2 «=- Reviewers

Descri ption Fixes #19504 5 rossbar !

| have added the clarification along with an example. @M“k““k“ (-

—_—
Of p rO posed @melissawm please check.
Assignees
Cha nges Mo one assigned

o & Add clarification X 2112618
—
Labels
o github-actions bot added the 04 - Documentation |abel 2 days ago %)= EENENE T
__
Projects
@ © Mukulikaa reviewed 23 hours ago View changes None yet

numpy/core/_add_newdocs. py Miilest
ilestone

Req U eStEd T S ©8 7957 795,10 @@ Mo milestone

Cha nges from — object : array like

An array, any object exposing the array interface, an object whose Linked Issues

reV|ewer - __array__ method returns an array, or any (nested) sequence. Successfully merging this pull request may close
__array__ method returns an array, or any (nested) sequence. However these issues.
if a number is passed as a parameter then it will return the number itself. () DOC: Clarify that np.array can be O-dim...
@ Mukulikaa 23 hours ago Contributor ®@ -
Notifications Customize

Hi @yashasvimisra2798, the lint test is failing because this line has more than 79 characters.
[\ Subscribe

‘_" Renly You're not receiving nofifications from this thread.

Requested
reviewers

Relevant
issues

& C Q8 codacy.com o © & v B e é‘ QA = § @ =
mwvgroup v Pitt-Google-Broker v Community @ v
« Go back
Pitt-GoogIe-Broker ‘ master v About this page
Dashboard
o
Commits
€ [% Filename a
[l
Files
broker / beam / bq_sink / bq_sink.py 3 issues 2 3 clones
Issues
o broker / beam / bq_sink / setup.py
Pull Requests o broker / beam Init__.py
Security broker / beam / README.md 5
Code patterns o broker / beam / value_added / setup.py
o broker / beam / value_added / transforms / filters.py 1 12
Settings
broker / beam / value_added / transforms / __init__.py 1
o broker / beam / value_added / transforms / salt2.py 1 14
0 broker / beam / value_added / value_added.py 5 2 4
o broker / broker_utils / broker_utils / beam_transforms.py 1 9
o broker / broker_utils / broker_utils / consumer_sim.py 9 6
o broker / broker_utils / broker_utils / data_utils.py 5

= C O 8 codacy.com w O s v @e® e = 5 @ =

mwvgroup v Pitt-Google-Broker

« Go back
Current Issues v master v Take a tour About this page
M
Dashboard
Filter &= All languages ~ All categories ~ All levels ~ All patterns ~ All authors ~
O
Commits broker/broker_utils/schema_maps/README.md
el 10 MINOR Code Style Expected: 80; Actual: 154 v
Files
3 The files in this directory contain mappings between the schema of an individual survey and a PGB-standardized schema that is used within the broker code.
0]
Issues .
broker/cloud_functions/README.md
-
Pull Requests 1 MINOR Code Style Expected: 80; Actual: 151 >
0 15 | 'ps_to_gcs' | Listens to the “{survey}-alerts’ Pub/Sub stream and stores each alert as an Avro file in Cloud Storage bucket "{survey}-alert_avros'. |
Security

broker/cloud_functions/check_cue_response/README.md

Code patterns

10(MINOR Code Style Expected: 80; Actual: 98 e
o] 3 This Cloud Function checks whether the broker responded appropriately to the auto-scheduler's cue.
Settings
1] MINOR Code Style Expected: 80; Actual: 133 v

4 It does this by first pausing to allow time for the response, and then checking each broker component, such as VMs and Dataflow jobs.

10] MINOR Code Style Expected: 80; Actual: 120 v

5 If a component is found to be in an unexpected state, a "Critical" error is raised which triggers a GCP alerting policy.

1] MINOR Code Style Expected: 1; Actual: 2 e

1] MINOR Code Style Expected: 80; Actual: 158 v

14 An alerting policy was created manually to notify Troy Raen of anything written to the log named ‘check-cue-response-cloudfnc® that has severity °'CRITICAL'

O Search or jump to

H LSSTDESC/SN-PWV | Pubiic

<> Code

@ Issues 5

O B8

17 Pull requests 2

github.com

Pull requests Issues Marketplace Explore

) Discussions (® Actions {3 Projects @ security |~ Insights 63 Settings

Addresses code inspections #186

IRVl djperrefort merged 1 commitinto master from djperrefort/code_inspections L‘,j on Aug 26, 2021

) Conversation 0

3

-O- Commits 1 E‘,Checks 4 Files changed 10

djperrefort commented on Aug 26, 2021 « edited «

Addresses violations of coding guidelines identified by ClI tools

O a Addresses code inspections
il a djperrefort enabled auto-merge (squash) 7 months ago

@ " djperrefort merged commit 75f1bee into master on Aug 26, 2021

5 checks passed

v Build-Documentation
7 Run-Tests (3.8)

v Run-Tests (3.9)
Test-Examples

v ° codeclimate 2 fixed issues

<L

@) diperrefort deleted the djperrefort/code_inspections branch 7 months ago

ﬂ Write

Leave a comment

H B 7 i= & & =

Preview

Member

v 3f57645

Hide details Revert

Details
Details
Details
Details

Details

Restore branch

@ &~

® Watch 3

Edit <> Code v

+76 -43 mEENR
Reviewers Q3
No reviews
Assignees Q3

No one—assign yourself

Labels @

None yet
Projects Z:OB
None yet
Milestone @

No milestone

Development @
Successfully merging this pull request may close these
issues

None yet

Notifications Customize

A Unsubscribe

You're receiving notifications because you modified the

open/close state

1 participant

-

-

% Fork

vy Star 0

Core Design Principles Object-Oriented Design (OOD)

o Big Design Up Front (BDUF) o S - Single-responsibility Principle

o Keep It Simple (KISS) > O - Open-closed Principle

o Principle of Least Surprise o L - Liskov Substitution Principle

o You Aren’t Going To Need It (YAGNI) o | - Interface Segregation Principle

o Don't Repeat Yourself (DRY) o D - Dependency Inversion Principle
Important PEP 8: Style Guide for Python Code

Fundamentals
PEP 20: The Zen of Python

PEP 257: Docstring Conventions

Bonus PEPs PEP 484: Type Hints
PEP 498: Literal String Interpolation

PEP 572: Assignment Expressions

