
Python Packaging Basics
Alan Pearl

AstroPGH Summer Seminar Series
July 13, 2022

Why create your own Python package?

● It’s easy
○ Simple format, easily install with pip install .

● Simplify your Jupyter notebooks by hiding your messy code
○ No more copy-and-pasting all of your code from notebook to notebook

● Share your code with collaborators
○ With a quick README file, anyone in the world can install your package from GitHub

Vocabulary - the components of a package

● A module is a Python file that you intend to import
● A script is a Python file that you intend to execute
● A package is a directory that must contain an __init__.py module
● Besides __init__.py, a package is allowed to contain other modules, scripts,

and sub-packages
● Importing a package simply imports the __init__.py module
● Executing a package executes the __main__.py script, if it exists

Example structure + pypackbasics (root directory)
| - setup.py
| - README.md
| + pypackbasics (package)
| | - __init__.py (module)
| | - basics.py (module)
| | + utilpack (package)
| | | - __init__.py (module)
| | | - utils.py (module)
| | + otherpack (package)
| | | - __init__.py (module)
| | | - __main__.py (script)
| | | - other.py (module)
| | | - another.py (module)

● This example package is
called pypackbasics.

● Note that setup.py and
doc files go outside the
package, in the root

● Package and module
names should be concise,
lower-case, with no
dashes, colons, etc.

● Underscores are okay if
necessary for readability

Install it yourself
+ pypackbasics (root directory)
| - setup.py
| - README.md
| + pypackbasics (package)
| | - __init__.py (module)
| | - basics.py (module)
| | + utilpack (package)
| | | - __init__.py (module)
| | | - utils.py (module)
| | + otherpack (package)
| | | - __init__.py (module)
| | | - __main__.py (script)
| | | - other.py (module)
| | | - another.py (module)

● View this example repository at
https://github.com/AlanPearl/pypackbasics

● You can fork this repo so you can always use
it as a template for yourself

● Let’s look through and edit this package
together. Clone it to your computer with:
git clone https://github.com/<user>/pypackbasics

● Follow the pip install instructions

https://github.com/AlanPearl/pypackbasics

How does pip know how to install it?
+ pypackbasics (root directory)
| - setup.py
| - README.md
| + pypackbasics (package)
| | - __init__.py (module)
| | - basics.py (module)
| | + utilpack (package)
| | | - __init__.py (module)
| | | - utils.py (module)
| | + otherpack (package)
| | | - __init__.py (module)
| | | - __main__.py (script)
| | | - other.py (module)
| | | - another.py (module)

● The package is specified by setup.py using
the find_packages function (see below)

from setuptools import setup, find_packages

setup(
name="pypackbasics",
version="1.0",
description="Python Packaging Basics: An educational template

package",
url="https://github.com/AlanPearl/pypackbasics",
author="Alan Pearl",
author_email="alanpearl@pitt.edu",
license="MIT",
python_requires=">=3.6", # note: 3.6 is required for f-strings
install_requires=[

"matplotlib",
"numpy>=1.18",

],
packages=find_packages()

)

https://github.com/AlanPearl/pypackbasics
mailto:alanpearl@pitt.edu

Importing this package
+ pypackbasics (root directory)
| - setup.py
| - README.md
| + pypackbasics (package)
| | - __init__.py (module)
| | - basics.py (module)
| | + utilpack (package)
| | | - __init__.py (module)
| | | - utils.py (module)
| | + otherpack (package)
| | | - __init__.py (module)
| | | - __main__.py (script)
| | | - other.py (module)
| | | - another.py (module)

● Open a python console or notebook anywhere
outside of the pypackbasics directory

● You can now simply import pypackbasics to
access most of the classes and functions

● However, __init__.py doesn’t import any code
from the otherpack package, so you will need to
explicitly import pypackbasics.otherpack

● The executable script can be run via
python -m pypackbasics.otherpack

Unit tests

● Adding unit tests saves time in the long run
● As you develop your code, you don’t want to

break functionality that was previously working
● Example below (test_basics.py)

+ pypackbasics (root directory)
| - setup.py
| - README.md
| + pypackbasics (package)
| | - __init__.py (module)
| | - basics.py (module)
| | + utilpack (package)
| | | - __init__.py (module)
| | | - utils.py (module)
| | + otherpack (package)
| | | - __init__.py (module)
| | | - __main__.py (script)
| | | - other.py (module)
| | | - another.py (module)
| + tests/ (package)
| | - __init__.py (module)
| | -test_basics.py (module)

import unittest

import pypackbasics

class TestPrimeFinder(unittest.TestCase):
def test_find_primes_up_to_10(self):

finder = pypackbasics.PrimeFinder()
finder.find_primes(max_prime=10)
assert finder.known_primes == [2, 3, 5, 7]
assert finder.highest_check == 10

