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Motivation: How can we describe wine?

Color: Red vs White Does not summarize well all the variations

Hue: Describes the variation Not enough to reconstruct the original

Alcohol Content, Grape Variety, …

State: Liquid Useless!

Features:



A “Good” summary should
use feature that represent most variation &

efficiently reconstruct the input 



Applying the same reasoning on data

Feature-2

Feature-1



Applying the same reasoning on data

Principal Component-2

Principal Component-1



Mathematically

a.k.a variance

a.k.a covariance

Diagonalize

Eigen values≡Principal Components
(Arranged in decreasing order)

Eigen vectors≡Principal Component Axes



A “Good” summary should
use feature that represent most variation &

efficiently reconstruct the input



Principal Component Axes Minimize Reconstruction Error 

Principal Component-2

Principal Component-1



Principal Component Axes Minimize Reconstruction Error 

Principal Component-2

Principal Component-1

a2= variance

b2= reconstruction error
c2

a2+ b2 = c2

max variance ≡ min reconstruction error



Principal Component Axes Minimize Reconstruction Error 

Principal Component-2

Principal Component-1

Projection on axis with 
minimum reconstruction error*

a2+ b2 = c2

max variance ≡ min reconstruction error

*In general we select the first n
components which account for 

most of the variance



Choosing a subset of Principal Components allow 
us to reduce dimensionality

(i.e. data compression)



Principal Component Analysis (PCA)* in Astronomy

*a.k.a. Karhunen-Loève (KL) transform



Dimensionality Reduction of SDSS Galaxy Spectra (Yip et al. 2004)

First 10 
Eigen-spectra

2D plot separates galaxies 
based on physical properties

Applications: Templates for redshift fitting, explore 
distribution of objects, outliers detection, …



Principal Components of images (Uzeirbegovic et al. 2020)

Eigen Galaxies

Photometric 
Bands



Caveat: PCA is only a rotation



Centering Data

Feature-2

Feature-1



Centering Data

Feature-2

Feature-1

Center (and optionally scale) data by 
subtracting the mean from each feature
(and divide by standard deviation)



Centering Data

Principal Component-2
Principal Component-1



Caveat: Linear Independence of Basis Vectors

Statistical Independence of Random Variables



Principal Component-2
Principal Component-1

Orthogonal basis vectors are linearly independent, 
diagonal covariance matrix ensures new features 
are uncorrelated

New features are statistically independent

Does NOT mean



Caveat: Feature with most variance

The most important feature





2.3.6. Dimensionality Reduction of Astronomical Spectra — scikit-learn 0.11-git documentation

https://ogrisel.github.io/scikit-learn.org/sklearn-tutorial/tutorial/astronomy/dimensionality_reduction.html


PCA: A Probabilistic Perspective
(and Introduction to Latent Variable Models)



Y = f(X)

Latent Variable Models

High Dimensional data you have 
observed

(Spectra, Images)

Low Dimensional variable you 
believe created the data
(Mass, Age, Metallicity)

Latent Variable Model



Y = W X + 𝜺

Assumption-1: Linear Model

Observed Vector

Latent Variable Vector
(unknown)

Transformation Matrix
(unknown)

Random Noise
(unknown)



Y = W X + 𝜺

Assumption-2: Gaussian Noise

𝜀~𝒩(0,Ψ)

Likelihood:     𝑝 𝑦𝑖 𝑥𝑖,𝑊 = 𝒩(𝑊𝑥𝑖, Ψ)

* I assumed that data is centered, this does not lose generalizability



Y = W X + 𝜺

Assumption-3: Gaussian Priors on Latent Variables

X~𝒩(0, 𝐈)

Likelihood:     𝑝 𝑦𝑖 𝑊 = 𝒩(0,𝑊𝑊𝑇 + Ψ)



Y = W X + 𝜺

Assumption-4: Isotropic Noise

Ψ = 𝜎2 𝐈

Likelihood:     𝑝 𝑦𝑖 𝑊 = 𝒩(0,𝑊𝑊𝑇 + 𝜎2 𝐈)



Maximum Likelihood Estimator (MLE)

Likelihood:     𝑝 𝑦𝑖 𝑊 = 𝒩(0,𝑊𝑊𝑇 + 𝜎2 𝐈)

Maximize Log Likelihood
≡

Maximize: 𝑇𝑟(𝑊𝑇𝑊× 𝑆)

Projection of Sample covariance along new axes
(under the assumption 𝜎2 → 0)

𝑆 =Sample Covariance



Maximum Likelihood Estimator (MLE)

Maximize Log Likelihood
≡

Maximize: 𝑇𝑟(𝑊𝑇𝑊× 𝑆)

Projection of Sample covariance along new axes
(under the assumption 𝜎2 → 0)

Which is exactly what PCA is!



You DO NOT need to use these assumptions for your 
latent variable model !



Y = f(X)

Latent Variable Models

• f(), linear: Assume any general prior on X and use Maximum Likelihood Estimation/ 
Maximum A Posteriori Estimation

• f(), linear: Assume non isotropic noise → Factor Analysis
• f(), non-linear: Use a neural network to model → Autoencoder
• f(), non-linear: X has noise, Use neural network → Variational Autoencoder
• f(), non-linear (aka linear with infinite dimensions) and with Gaussian Priors →

Gaussian Process Latent Variable Model



Summary

• Principal Components rotate your axes towards maximum variance

• Principal Components have the lowest reconstruction error →
Good for dimensionality reduction

• Principal Component Analysis is just one specific kind of Latent Variable 
Model


