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Motivation: How can we describe wine?
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State: Liquid »  Useless!

Features: Color: Red vs White »  Does not summarize well all the variations

Hue: Describes the variation »  Not enough to reconstruct the original

Alcohol Content, Grape Variety, ...



A “Good” summary should
use feature that represent most variation &
efficiently reconstruct the input



Applying the same reasoning on data
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Applying the same reasoning on data

Principal Component-1
Principal Component-2



Mathematical
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Diagonalize

a.k.a covariance

Eigen vectors=Principal Component Axes

Eigen values=Principal Components
(Arranged in decreasing order)



A “Good” summary shoulc
use feature that represent most variation &

efficiently reconstruct the input




Principal Component Axes Minimize Reconstruction Error

Principal Component-1

Principal Component-2



Principal Component Axes Minimize Reconstruction Error

aZ+ b2=¢?

max variance = min reconstruction error

econstruction error

aZ=variance

Principal Component-1
Principal Component-2



Principal Component Axes Minimize Reconstruction Error

aZ+ b2=¢?
max variance = min reconstruction error Projection on axis with
minimum reconstruction error*®
Principal Component-1 *In general we select the first n

Principal Component-2 components which account for
most of the variance



Choosing a subset of Principal Components allow
us to reduce dimensionality
(i.e. data compression)



Principal Component Analysis (PCA)* in Astronomy

*a.k.a. Karhunen-Loéve (KL) transform



Dimensionality Reduction of SDSS Galaxy Spectra (Yip et al. 2004)
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2D plot separates galaxies
based on physical properties

Applications: Templates for redshift fitting, explore
distribution of objects, outliers detection, ...




Principal Components of images (Uzeirbegovic et al. 2020)

Eigen Galaxies




Caveat: PCA is only a rotation



Centering Data

Feature-1 <«

Feature-2



Centering Data

Feature-1

Center (and optionallyscale) data by
subtracting the mean from each feature
(and divide by standard deviation)
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Centering Data

Principal Component-1
Principal Component-2



Caveat: Linear Independence of Basis Vectors
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Statistical Independence of Random Variables



Orthogonal basis vectors are linearly independent,
diagonal covariance matrix ensures new features
are uncorrelated

Does NOT mean

v

New features are statisticallyindependent

Principal Component-1

Principal Component-2



Caveat: Feature with most variance
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The most important feature



. Neil Lawrence
@ @lawrennd
"Have you run PCA on it?" is the data scientist's
equivalent of "Have you switched it off and on again?"

1:44 PM - Jun 12, 2020 - Twitter Web App



Download Support UserGuide Examples
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2.3.6. Dimensionality Reduction of Astronomical Spectra — scikit-learn 0.11-git documentation



https://ogrisel.github.io/scikit-learn.org/sklearn-tutorial/tutorial/astronomy/dimensionality_reduction.html

PCA: A Probabilistic Perspective
d Introduction to Latent Variable Models)



Latent Variable Models

Low Dimensional variableyou
believe created the data
(Mass, Age, Metallicity)

|

Y = f(X)

|

Latept Variable Model

High Dimensional datayou have
observed
(Spectra, Images)



Assumption-1: Linear Model

Transformation Matrix
(unknown)
Random Noise
(unknown)

|

Y=WX+¢&

|

Observed Vector

Latent Variable Vector
(unknown)



Assumption-2: Gaussian Noise

Y=WX+¢&

e~N (0, V)

Likelihood: p(y;lx;, W) = N(Wx;,P)

* 1 assumed that datais centered, this does not lose generalizability



Assumption-3: Gaussian Priors on Latent Variables

Y=WX+¢&

X~N(0, 1)

Likelihood: p(y;|W) = N0, WWT + @)



Assumption-4: |Isotropic Noise

Y=WX+¢&

VN |

Likelihood: p(y;|W) = N (O, WWT + 2 1)



Maximum Likelihood Estimator (MLE)

Likelihood: p(y;|W) = N(O,WWT + o2 1)

Maximize Log Likelihood

MaXimize: TT(WTW X S) S =Sample Covariance
- J
Y

Projection of Sample covariance along new axes
(under the assumption a2 —= 0)




Maximum Likelihood Estimator (MLE)

Maximize Log Likelihood

Maximize: Tr(W'W x S)
- J
Y

Projection of Sample covariance along new axes
(under the assumption a2 —= 0)

Which is exactly what PCA is!



You DO NOT need to use these assumptions for your
latent variable model |



Latent Variable Models
Y = f(X)

* f(), linear: Assume any general prior on X and use Maximum Likelihood Estimation/
Maximum A Posteriori Estimation

* f(), linear: Assume non isotropic noise = Factor Analysis

* f(), non-linear: Use a neural network to model = Autoencoder

* f(), non-linear: X has noise, Use neural network = Variational Autoencoder

* f(), non-linear (aka linear with infinite dimensions) and with Gaussian Priors 2>
Gaussian Process Latent Variable Model



Summary

* Principal Components rotate your axes towards maximum variance

* Principal Components have the lowest reconstruction error 2
Good for dimensionality reduction

* Principal Component Analysis is just one specific kind of Latent Variable
Model



